Sciencia Acta Xaveriana An International Science Journal ISSN. 0976-1152

Volume 7 No. 1 pp. 37-46 March 2016

EVEN VERTEX EQUITABLE EVEN LABELING

A. Lourdusamy¹, J. Shobana Mary² and F. Patrick³

^{1&3} Department of Mathematics,

St.Xavier's College, Palayamkottai - 627002, India.

² M.Sc. Student, Reg. No: 144821ER016,

Department of Mathematics,

St. Antony's College of Arts and Science for Women,

Thamaraipadi, Dindigul - 624005, India.

¹Email: <u>lourdusamy15@gmail.com</u>

²Email:jsom17@gmail.com

³Email: <u>patrick881990@gmail.com</u>

Abstract: Let G be a graph with p vertices and q edges and $A = \{0, 2, 4, ..., q + 1\}$ if q is odd or $A = \{0, 2, 4, ..., q\}$ if q is even. A graph G is said to be an even vertex equitable even labeling if there exists a vertex labeling $f: V(G) \to A$ that induces an edge labeling f^* defined by $f^*(uv) = f(u) + f(v)$ for all edges uv such that for all a and b in A, $|v_f(a) - v_f(b)| \le 1$ and the induced edge labels are 2, 4, ..., 2q, where $v_f(a)$ be the number of vertices v with f(v) = a for $a \in A$. A graph that admits even vertex equitable even labeling is called an even vertex equitable even graph. In this paper, we prove that path, comb, complete bipartite, cycle, $K_2 + mK_1$, bistar, ladder, $S(L_n), S(B_{n,n})$ and $L_n \odot K_1$ are even vertex equitable even graphs.

Keywords: vertex equitable labeling, even vertex equitable even labeling,

AMS Mathematics Subject Classification (2010): 05C78

(Received : 1st September 2015 ; Accepted : 31st January 2016)

1. INTRODUCTION

All graphs considered here are simple, finite, connected and undirected. Let G(V, E) be a graph with p vertices and q edges. We follow the basic notations and terminologies of graph theory as in [2]. A graph labeling is an assignment of integers to the vertices or edges or both, subject to certain conditions and a detailed survey of graph labeling can be found in[1]. The concept of vertex equitable labeling was introduced by Lourdusamy and Seenivasan [3].

Definition 1.1[3]Let *G* be a graph with *p* vertices and *q* edges and $A = \{0, 1, 2, ..., \left\lceil \frac{q}{2} \right\rceil\}$. A graph *G* is said to be vertex equitable if there exists a vertex labeling $f: V(G) \to A$ that induces an edge labeling f^* defined by $f^*(uv) = f(u) + f(v)$ for all edges uv such that for all *a* and *b* in *A*, $|v_f(a) - v_f(b)| \le 1$ and the induced edge labels are 1, 2, 3, ..., q, where $v_f(a)$ be the number of vertices *v* with f(v) = a for $a \in A$. A graph that admits vertex equitable labeling is called vertex equitable graph.

Motivated by the concept of vertex equitable labeling, we introduce a new concept of vertex equitable labeling called even vertex equitable even labeling.

Definition 1.2: Let G be a graph with p vertices and q edges and $A = \{0,2,4,...,q+1\}$ if q is odd or $A = \{0,2,4,...,q\}$ if q is even. A graph G is said to be an even vertex equitable even labeling if there exists a vertex labeling $f:V(G) \rightarrow A$ that induces an edge labeling f^* defined by $f^*(uv) = f(u) + f(v)$ for all edges uv such that for all a and b in A, $|v_f(a) - v_f(b)| \le 1$ and the induced edge labels are 2,4,...,2q, where $v_f(a)$ be the number of vertices v with f(v) = a for $a \in A$. A graph that admits even vertex equitable even labeling is called an even vertex equitable even graph.

Definition 1.3: The corona $G_1 \odot G_2$ of two graphs $G_1(p_1, q_1)$ and $G_2(p_2, q_2)$ is defined as the graph obtained by taking one copy of G_1 and p_1 copies of G_2 and joining the *i*th vertex of G_1 with an edge to every vertex in the *i*th copy of G_2 .

Definition 1.4: The *bistar* $B_{n,n}$ is the graph obtained by attaching the apex vertices of two copies of $K_{1,n}$ by an edge.

Definition 1.5: The *complete bipartite* graph is a simple bipartite graph such that every vertex in one of the bipartition subsets is joined to every vertex in the other bipartition subset. Any complete bipartite graph that has m vertices in one of its subsets and n vertices in other is denoted by $K_{n,m}$.

Definition 1.6: The join of two graphs G_1 and G_2 is denoted by $G_1 + G_2$ and whose vertex set is $V(G_1 + G_2) = V(G_1) \cup V(G_2)$ and edge set is $E(G_1 + G_2) = E(G_1) \cup E(G_2) \cup \{uv : u \in V(G_1), v \in V(G_2)\}.$

Definition 1.7: The subdivision of graph S(G) is obtained from G by subdividing each edge of G with a vertex.

Definition 1.8: A Cartesian product of two graphs G_1 and G_2 is the graph $G_1 \times G_2$ such that its vertex set is a cartesian product of $V(G_1)$ and $V(G_2)$ i.e.,

 $V(G_1 \times G_2) = V(G_1) \times V(G_2) = \{(x, y) : x \in V(G_1), y \in V(G_2)\}$ and its edge set is defined as $(G_1 \times G_2) = \{((x_1, x_2), (y_1, y_2)) : x_1 = y_1 \text{ and } (x_2, y_2) \in E(G_2) \text{ or } x_2 = y_2 \text{ and } (x_1, y_1) \in V(G_2)\}$

 $(G_1 \times G_2) = \{ ((x_1, x_2), (y_1, y_2)) : x_1 = y_1 \text{ and } (x_2, y_2) \in E(G_2) \text{ or } x_2 = y_2 \text{ and } (x_1, y_1) \in E(G_1) \}$

Definition 1.9: The graph $P_n \times P_2$ is called a *ladder graph*.

2. MAIN RESULTS

Theorem 2.1 The path P_n is an even vertex equitable even graph.

Proof: Let P_n be a path with consecutive vertices $u_1, u_2, ..., u_n$. Then P_n is of order n and size n-1. Define $f: V(P_n) \to A = \begin{cases} 0, 2, 4, ..., n & \text{if } n-1 \text{ is odd} \\ 0, 2, 4, ..., n-1 & \text{if } n-1 \text{ is even} \end{cases}$ as follows: $f(u_i) = \begin{cases} i-1 & \text{if } i \text{ is odd} \\ i & \text{if } i \text{ is even} \end{cases} \text{ for } 1 \le i \le n.$

It is easily verified that the induced edge labels of P_n are 2,4,6 ..., 2n - 2.

Thus, $|v_f(a) - v_f(b)| \le 1$ for all $a, b \in A$.

Hence the path P_n is an even vertex equitable even graph.

Example 2.2 An even vertex equitable even labeling of P_6 is shown in Figure 2.1

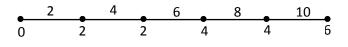


Figure 2.1

Theorem 2.3 The comb is an even vertex equitable even graph.

Proof: Let G be a comb obtained from the path $u_1, u_2, ..., u_n$ by joining a vertex v_i to u_i for each i = 1, 2, ..., n. Then G is of order 2n and size 2n - 1.

Define $f: V(G) \rightarrow A = \{0, 2, 4, 6, \dots, 2n\}$ as follows:

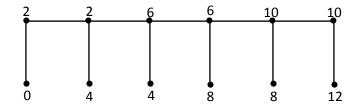
$$f(u_i) = \begin{cases} 2i & \text{if } i \text{ is odd} \\ 2i-2 & \text{if } i \text{ is even} \end{cases}; 1 \le i \le n$$
$$f(v_i) = \begin{cases} 2i-2 & \text{if } i \text{ is odd} \\ 2i & \text{if } i \text{ is even} \end{cases} 1 \le i \le n$$

It can be easily verified that the induced edge labels of $P_n \odot K_1$ are 2,4,6, ..., 4n - 2.

Thus, $|v_f(a) - v_f(b)| \le 1$ for all $a, b \in A$.

Hence the comb is an even vertex equitable even graph.

Example 2.4 An even vertex equitable of comb is shown in Figure 2.2



Theorem 2.5The cycle C_n is an even vertex equitable even graph if and only if $n \equiv 0,3 \pmod{4}$

Proof: Let C_n be a cycle with consecutive vertices $u_1, u_2, u_3, ..., u_n$, where $n \equiv 0,3 \pmod{4}$. Then C_n is of order n and size n.

Define $f: V(C_n) \to A = \begin{cases} 0, 2, 4, \dots, n+1 & if \ n \ is \ odd \\ 0, 2, 4, \dots, n & if \ n \ is \ even \end{cases}$ as follows: $f(u_i) = \begin{cases} i-1 \ if \ i \ is \ odd \ and \ 1 \le i \le \left\lfloor \frac{n}{2} \right\rfloor \\ i+1 \ if \ i \ is \ odd \ and \ \left\lceil \frac{n}{2} \right\rceil \le i \le n \\ i \ if \ i \ is \ even \ and \ 1 \le i \le n \end{cases}$

It can be easily verified that the induced edge labels of cycle are $2,4,6, \dots, 2n$.

Thus, $|v_f(a) - v_f(b)| \le 1$ for all $a, b \in A$.

Hence the cycle C_n is an even vertex equitable even graph iff $n \equiv 0.3 \pmod{4}$.

Theorem 2.6The graph $K_{2,n}$ is an even vertex equitable even graph.

Proof:Let (V_1, V_2) be the bipartition of $K_{2,n}$ with $V_1 = \{u, v\}$ and $V_2 = \{v_1, v_2, \dots, v_n\}$. Then $K_{2,n}$ is of order n + 2 and size 2n.

Define $f: V(K_{2,n}) \rightarrow A = \{0, 2, 4, \dots, 2n\}$ as follows:

$$f(v) = 0; f(u) = 2n;$$

 $f(v_i) = 2i; 1 \le i \le n.$

It can be easily verified that the induced edge labels of $K_{2,n}$ are 2,4, ..., 4n.

Thus, $|v_f(a) - v_f(b)| \le 1$ for all $a, b \in A$.

Hence the graph $K_{2,n}$ is an even vertex equitable even graph.

Theorem 2.7 The bistar $B_{n,n}$ is an even vertex equitable even graph.

Proof: Let u and v be the end vertices of K_2 and for each i = 1, 2, ..., n. Let u_i , v_i be the vertices adjacent to u and v respectively. Then $B_{n,n}$ is of order 2n + 2 and size 2n + 1. Define $f: V(B_{n,n}) \rightarrow A = \{0, 2, 4, ..., 2n + 2\}$ as follows:

$$f(u) = 0; f(v) = 2n + 2;$$

 $f(v_i) = f(u_i) = 2i; 1 \le i \le n$

It can be easily verified that the induced edge labels of $B_{n,n}$ are 2,4,6, ..., 4n + 2.

Thus, $|v_f(a) - v_f(b)| \le 1$ for all $a, b \in A$.

Hence the bistar $B_{n,n}$ is an even vertex equitable even graph.

Example 2.8 An even vertex equitable even labeling of $B_{5,5}$ is shown in Figure 2.3

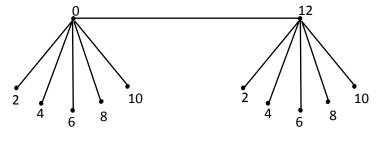


Figure 2.3

Theorem 2.9 The graph $K_2 + mK_1$ is an even vertex equitable even graph.

Proof: Let $G = K_2 + mK_1$. Let $V(G) = \{u, v, w_1, w_2, ..., w_m\}$ and $E(G) = \{uv\} \cup \{uw_i, vw_i: 1 \le i \le m\}$. Then G is of order m + 2 and size 2m + 1.

Define $f: V(G) \rightarrow A = \{0, 2, 4, \dots, 2m + 2\}$ as follows:

$$f(u) = 0;$$

$$f(v) = 2m + 2;$$

$$f(w_i) = 2i \ ; 1 \le i \le m$$

It can be easily verified that the induced edge labels of $K_2 + mK_1$ are 2,4, ..., 4m + 2.

Thus, $|v_f(a) - v_f(b)| \le 1$ for all $a, b \in A$.

Hence the graph $K_2 + mK_1$ is an even vertex equitable even graph.

Example 2.10 An even vertex equitable even labeling of $K_2 + 5K_1$ is shown in Figure 2.4

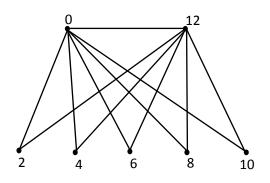


Figure 2.4

Theorem 2.11 The ladder graph L_n is an even vertex equitable even graph.

Proof: Let u_1, u_2, \dots, u_n and v_1, v_2, \dots, v_n be the vertices of L_n .

Let $E(L_n) = \{u_i u_{i+1}, v_i v_{i+1} : 1 \le i \le n-1\} \cup \{u_i v_i : 1 \le i \le n\}$. Then L_n is of order 2n and size 3n - 2.

Define
$$f: V(L_n) \rightarrow A = \begin{cases} 0, 2, 4, \dots, 3n-1 & \text{if } 3n-2 & \text{is odd} \\ 0, 2, 4, \dots, 3n-2 & \text{if } 3n-2 & \text{is even} \end{cases}$$
 as follows:

$$f(u_i) = \begin{cases} 3i-1 & \text{if } i \text{ is odd} \\ 3i-2 & \text{if } i \text{ is even} \end{cases}; 1 \le i \le n.$$

$$f(v_i) = \begin{cases} 3i-3 & \text{if } i \text{ is odd} \\ 3i-2 & \text{if } i \text{ is even} \end{cases}; 1 \le i \le n.$$

It can be easily verified that the induced labels of L_n are 2,4, ..., 6n - 4.

Thus, $|v_f(a) - v_f(b)| \le 1$ for all $a, b \in A$.

Hence the graph L_n is an even vertex equitable even graph.

Example 2.12 An even vertex equitable even labeling of L_5 is shown in Figure 2.5

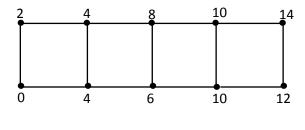


Figure 2.5

Theorem 2.13The graph $S(B_{n,n})$ is an even vertex equitable even graph.

Proof: Let $V(B_{n,n}) = \{u, v\} \cup \{v_i, u_i: 1 \le i \le n\}$ and $E(B_{n,n}) = \{uv\} \cup \{uu_i, vv_i: 1 \le i \le n\}$. Let v'_i be the newly added vertex between v and v_i . Let u'_i be the newly added vertex between u and u_i . Let w be the newly added vertex between u and v. Then $S(B_{n,n})$ is of order 4n + 3 and size 4n + 2.

Define $f: V(S(B_{n,n})) \to A = \{0,2,4,\dots,4n+2\}$ as follows: f(u) = 2:

$$f(w) = f(v) = 4n;$$

$$f(u'_1) = 2;$$

$$f(u_i) = 4i - 4; 1 \le i \le n$$

$$f(v_i) = 4i + 2; 1 \le i \le n$$

$$f(u'_i) = 4i - 4; 2 \le i \le n$$

$$f(v'_i) = 4i + 2; 1 \le i \le n$$

It can be easily verified that the induced edge labels of $S(B_{n,n})$ are 2,4,6, ..., 8n + 4.

Thus, $|v_f(a) - v_f(b)| \le 1$ for all $a, b \in A$.

Hence the graph $S(B_{nn})$ is an even vertex equitable even graph.

Theorem 2.14The graph $S(L_n)$ is an even vertex equitable even graph.

Proof: Let $u_1, u_2, u_3, ..., u_n$ and $v_1, v_2, v_3, ..., v_n$ be the vertices of the ladder L_n . Let v'_i be the newly added vertex between v_i and v_{i+1} . Let u'_i be the newly added vertex between u_i and u_{i+1} . Let w_i be the newly added vertex between v_i and u_i . Then $S(L_n)$ is of order 5n - 2 and size 6n - 4.

Define $f: V(S(L_n)) \rightarrow A = \{0, 2, 4, \dots, 6n - 4\}$ as follows:

$$f(u_i) = \begin{cases} 6i - 4 & if \ i \ is \ odd \\ 6i - 6 & if \ i \ is \ even \end{cases}; \ 1 \le i \le n$$

$$f(v_i) = \begin{cases} 6i - 6 & if \ i \ is \ odd \\ 6i - 4 & if \ i \ is \ even \end{cases}; \ 1 \le i \le n$$

$$f(u'_i) = \begin{cases} 6i - 2 & if \ i \ is \ odd \\ 6i + 2 & if \ i \ is \ even \end{cases}; \ 1 \le i \le n - 1$$

$$f(v'_i) = \begin{cases} 6i + 2 & if \ i \ is \ odd \\ 6i - 2 & if \ i \ is \ even \end{cases}; \ 1 \le i \le n - 1$$

$$f(w_1) = 2;$$

$$f(w_i) = 6i - 6; \ 2 \le i \le n$$

It can be easily verified that the induced edge labels of $S(L_n)$ are 2,4,6, ..., 12n - 8.

Thus, $|v_f(a) - v_f(b)| \le 1$ for all $a, b \in A$.

Hence the graph $S(L_n)$ is an even vertex equitable even graph.

Example 2.15 An even vertex equitable even labeling of $S(L_5)$ is shown in Figure 2.6

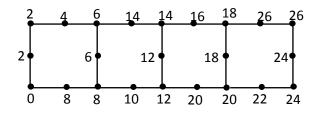


Figure 2.6

Theorem 2.16 The graph $L_n \odot K_1$ is an even vertex equitable even graph.

Proof: Let $u_1, u_2, u_3, ..., u_n$ and $v_1, v_2, v_3, ..., v_n$ be the vertices of the ladder L_n . Let u'_i and v'_i be the new vertices adjacent with u_i and v_i respectively. Then $L_n \odot K_1$ is of order 4n and size 5n - 2.

Define $f: V(L_n \odot K_1) \to A = \begin{cases} 0, 2, 4, \dots, 5n - 1 & \text{if } 5n - 2 \text{ is odd} \\ 0, 2, 4, \dots, 5n - 2 & \text{if } 5n - 2 \text{ is even} \end{cases}$ as follows: $f(u_{2i-1}) = 10i - 8; 1 \le i \le \left\lceil \frac{n}{2} \right\rceil$ $f(u_{2i}) = 10i - 4; 1 \le i \le \left\lceil \frac{n}{2} \right\rceil$ $f(v_{2i-1}) = 10i - 8; 1 \le i \le \left\lceil \frac{n}{2} \right\rceil$ $f(v_{2i}) = 10i - 2; 1 \le i \le \left\lceil \frac{n}{2} \right\rceil$ $f(u'_{2i-1}) = 10i - 10; 1 \le i \le \left\lceil \frac{n}{2} \right\rceil$ $f(u'_{2i}) = 10i - 4; 1 \le i \le \left\lceil \frac{n}{2} \right\rceil$ $f(u'_{2i-1}) = 10i - 6; 1 \le i \le \left\lceil \frac{n}{2} \right\rceil$

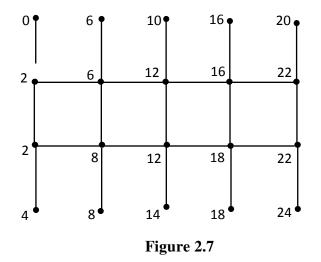
$$f(v'_{2i}) = 10i - 2; 1 \le i \le \left\lfloor \frac{n}{2} \right\rfloor$$

It can be easily verified that the induced edge labels of $L_n \odot K_1$ are 2,4,6, ..., 10n - 4.

Thus, $|v_f(a) - v_f(b)| \le 1$ for all $a, b \in A$.

Hence the graph $L_n \odot K_1$ is an even vertex equitable even graph.

Example 2.17 An even vertex equitable even labeling of $L_5 \odot K_1$ is shown in Figure 2.7



REFERENCES

- J. A. Gallian, "A Dyamic Survey of Graph Labeling", *The Electronic J.Combin.*, 17 (2014) #DS6.
- 2. F. Harary, Graph Theory, Addison-wesley, Reading, Mass 1972.
- 3. P. Jeyanthi and A. Maheswari, "Vertex Equitable labeling of cycle and path related graphs" *Utilitas Mathematica* 98 (2015).
- A. Lourdusamy and M. Seenivasan, "Vertex Equitable labeling of graphs", *Journal of Discrete Mathematical Sciences & Cryptography*, 11(6) (2008) 727-735.